

Betaface Face Detection and
Recognition SDK

version 2.0

http://www.betaface.com

Page 1 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

Introduction

Betaface Face Detection and Recognition SDK is a Windows DLL library containing set of the

algorithms trained and tuned to detect human face pattern and some of the facial features on static images
and in video streams. SDK detects frontal faces (with some tolerance to the head rotation) under any
angle on the image and returns coordinates of faces found and all detected face features. SDK can be
accessed from different environments, as long as you can make a call to DLL, COM object or .Net
assembly.

SDK features summary:

- Detect multiple faces on images (all SDK editions) or in video streams (SDK Xtreme).
- Crop faces from the images based on detection information.
- Compare faces (similarity score, identification, and verification).
- Morph, warp or generate average face images.
- Detect face landmarks coordinates (22 points in SDK Standard, 22+86=108 points in SDK

Pro and Xtreme).
- Classification, such as gender, age, ethnicity estimation; smile, glasses, mustache and beard

detection (SDK Pro and Xtreme).
- Additional face measurements such as face and face features shape description; hairstyle

shape estimation; skin, hair, clothes color (SDK Pro and Xtreme).

Most of the algorithms do not require color information and work on grayscale pixel values
internally. Extended measurements that require color information (for example hairstyle detection) will
return empty result for grayscale images.

Technical details:

SDK core is a Windows native DLL with additional COM and .Net interface wrappers. SDK

package includes all necessary runtime files, this documentation and precompiled samples of usage with
source code in C++ and C#. SDK includes software license protection system. Our typical licensing option
is a hardware-locked license key file, which allow you to execute SDK runtime on a specific PC hardware.

Images can be loaded either from file system location (in various supported formats) or directly

from memory (raw pixel data). SDK Xtreme also allows video input for face tracking (VFW compatible
source, external video capture with raw video frames or, with additional sample project, from DirectShow
compatible sources).

Betaface offers additional components, ready or customized solutions on request, such as

complete web service infrastructure, including server-side and web-side assemblies, storage database
and processing queue, as well as 64bit SDK builds.

Page 2 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

Contents

Introduction ... 1

SDK functions ... 5

SDK initialization and return values ... 5

Betaface_Init ... 5

Betaface_Deinit ... 5

Loading, saving, copying, displaying and releasing images ... 6

Betaface_LoadImage... 6

Betaface_SaveImage ... 6

Betaface_LoadMemoryImage ... 7

Betaface_SaveMemoryImage .. 7

Betaface_CopyImage .. 8

Betaface_ReleaseImage .. 8

Betaface_ReleaseMemoryImage ... 8

Betaface_GetImageSize ... 9

Betaface_DisplayImage .. 9

Face detection ... 10

Betaface_DetectFaces ... 10

Betaface_ReleaseDetectionResult ... 11

Processing detection result, retrieving faces information ... 12

Betaface_GetFacesCount .. 12

Betaface_GetFaceInfo ... 12

Betaface_CreateFaceInfo ... 12

Betaface_CopyFaceInfo .. 13

Betaface_ReleaseFaceInfo .. 13

Getting and setting face information property values ... 14

Betaface_GetFaceInfoBoolParam .. 14

Betaface_GetFaceInfoDoubleParam .. 14

Betaface_SetFaceInfoBoolParam ... 15

Betaface_SetFaceInfoDoubleParam ... 15

Predefined parameters .. 16

Features of the Face type .. 16

Features of the Point type ... 16

Features of the Measurement type .. 19

Face recognition ... 20

Betaface_GenerateFaceKey .. 20

Betaface_CompareFaceKeys .. 20

Betaface_CompareFaceKeysEx .. 21

Page 3 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

Betaface_ReleaseFaceKey .. 21

Betaface_JoinFaceKeys .. 22

Betaface_ReconstructFace .. 22

Betaface_ReconstructFaceAvi .. 23

Classifying faces (Gender, Age, Ethnicity, Smile, Glasses or facial hair detection) ... 24

Betaface_AnalyseFace .. 24

Cropping and drawing faces ... 25

Betaface_CropFaceImage ... 25

Betaface_CropImageAspect .. 26

Betaface_DrawFaceInfo ... 27

Face effects - morphing, warping, transporting to another image ... 28

Betaface_MorphFaces .. 28

Betaface_TransportFace ... 28

Betaface_TransformFaceInfo.. 29

Average faces – functions to create face composites .. 30

Betaface_GetStoredAverageFaceInfo ... 30

Betaface_UpdateAverageImage .. 30

Betaface_UpdateAverageFaceInfo ... 31

Video Processing (SDK Xtreme) ... 32

Introduction ... 32

Initialize video capturing from uncompressed video file or VFW source ... 33

Betaface_LoadVideo ... 33

Betaface_CaptureVideo .. 33

Initialize video capturing from custom external video source .. 34

Betaface_CaptureVideoCb .. 34

Callback CB_GrabNextFrame .. 34

De-initializing capturing and releasing allocated resources .. 35

Betaface_ReleaseVideo ... 35

Set capturing process callbacks .. 35

Betaface_SetFrameGrabbedCallback ... 35

Callback CB_OnFrameGrabbed... 35

Betaface_SetFrameReleasedCallback... 36

Callback CB_OnFrameReleased .. 36

Set tracking process callbacks .. 37

Betaface_SetFaceInfoUpdatedCallback ... 37

Callback CB_OnFaceInfoUpdated ... 37

Starting/stopping both capturing and tracking processes ... 39

Betaface_StartDetectFaces ... 39

Page 4 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

Betaface_StopDetectFaces .. 39

Betaface_WaitDetectFaces ... 40

Monitoring tracking progress and display debug information ... 41

Betaface_GetCurrentDetectionState ... 41

Betaface_DrawVideoFrame .. 41

Page 5 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

SDK functions

SDK initialization and return values

Each SDK function returns integer value - 0 for no error and negative values for various error conditions.

Following values are predefined for all functions:

BETAFACE_BAD_STATE NULL
BETAFACE_OK 0
BETAFACE_ERROR_INTERNAL -1
BETAFACE_ERROR_INVALIDPARAM -2
BETAFACE_ERROR_LOADINGIMAGE -3
BETAFACE_ERROR_NOTSUPPORTED -4

SDK instance should be initialized prior to calling various SDK functions. Initialization function will return
internal state reference value which should be passed back with each SDK function call. It is
recommended to initialize separate instance for each execution thread. After initialization different images
or video feeds can be repeatedly processed. At the application exit, or to save RAM allocated for instance
de-initialization function should be called.

Betaface_Init (BetafaceInternalState* pState)

Call this function to initialize the library and retrieve internal state value.

Parameters:

 pState Pointer to BetafaceInternalState variable, by this address internal state reference value

will be returned. Value BETAFACE_BAD_STATE is returned if the function fails.

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise.

Betaface_Deinit (BetafaceInternalState* pState)

Call this function to release internal library state and all associated resources.

Parameters:

 pState Pointer to BetafaceInternalState variable, by this address should be stored valid internal

state reference value.

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise.

Page 6 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

Loading, saving, copying, displaying and releasing images

Betaface_LoadImage (BetafaceInternalState State, char* strImageFilename, BetafaceImage* pImg)

This function loads the static image from the HDD to the memory and converts it to internal Betaface image
representation format.

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function.

 strImageFilename full pathname to the static image on the HDD. Accepted file formats are: JPEG files

(*.jpeg;*.jpg;*.jpe), Windows bitmap (*.bmp;*.dib), Portable Network Graphics files

(*.png), Portable image format (*.pbm;*.pgm;*.ppm), Sun raster files (*.sr;*.ras) and

TIFF Files (*.tiff;*.tif).

 pImg pointer to BetafaceImage variable, by this address image in internal Betaface

format will be returned.

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise.

Betaface_SaveImage (BetafaceInternalState State, char* strImageFilename, BetafaceImage Img,
BetafaceSaveImageFlags flags, char* strText);

This function converts and stores image from internal Betaface image representation to one of the common
file formats.

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function.

 strImageFilename Full pathname to the static image on the HDD. Accepted file formats are: JPEG
files (*.jpeg;*.jpg;*.jpe), Windows bitmap (*.bmp;*.dib), Portable Network
Graphics files (*.png), Portable image format (*.pbm;*.pgm;*.ppm), Sun raster
files (*.sr;*.ras) and TIFF Files (*.tiff;*.tif).

 Img Betaface internal representation image in BetafaceImage type variable

 flags Optional combination of image saving parameter flags.

Following flags are currently supported:
BETAFACE_SAVEIMAGE_GRAYSCALE = 0x1 – convert image to grayscale.

BETAFACE_SAVEIMAGE_FLIP_HORISONTAL = 0x2 – mirrors image.

 strText Reserved for future use

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise.

Page 7 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

Betaface_LoadMemoryImage (BetafaceInternalState State, unsigned char* pImageBytes, int iWidth, int
iHeight, double dPixelAspect, BetafaceMemoryFormat nFormat, bool bFlipVertical, BetafaceImage* pImg)
This function loads the static image from the memory and converts it to internal Betaface image

representation format.

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function.

 pImageBytes Pointer to a memory buffer where uncompressed image pixel data is located

according to supplied image size and format parameters.

 iWidth Image width in pixels

 iHeight Image height in pixels

 dPixelAspect Real x/y pixel aspect of the image pixels. For regular images stored as pixel buffers

this value is 1.0. For uncompressed video frames in some specific formats like

MPEG2 this value can differ from 1.0, i.e. pixels are not squares. SDK functions need

square pixels as an input and this function can reshape them.

 nFormat Format of the image pixel data in supplied memory buffer. Accepted format values

are:

BETAFACE_MEMORYIMAGE_GG = 0x1 (8 bit grayscale)

BETAFACE_MEMORYIMAGE_RRGGBB = 0x2 (24 bit RGB)

BETAFACE_MEMORYIMAGE_BBGGRR = 0x3 (24 bit BGR)

BETAFACE_MEMORYIMAGE_RRGGBBAA = 0x4 (32 bit RGB)

BETAFACE_MEMORYIMAGE_BBGGRRAA = 0x5 (32 bit BGR)

 bFlipVertical If this parameter is true, image buffer will be flipped vertically during conversion. SDK

assumes origin of the image is in top left corner.

 pImg Pointer to BetafaceImage variable, by this address image in internal Betaface format

will be returned.

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise.

Betaface_SaveMemoryImage (BetafaceInternalState State, BetafaceImage Img,

BetafaceMemoryFormat nFormat, int* piWidth, int* piHeight, char** ppImageBytes, int* piImageBytesLen)

This function converts and exports the static image from the internal Betaface image representation format

to memory format.

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function.

 Img Betaface internal representation image in BetafaceImage type variable

 nFormat Format of the image pixel data that exported memory image should have.
Accepted format values are:
BETAFACE_MEMORYIMAGE_GG = 0x1 (8 bit grayscale)
BETAFACE_MEMORYIMAGE_RRGGBB = 0x2 (24 bit RGB)

BETAFACE_MEMORYIMAGE_BBGGRR = 0x3 (24 bit BGR)

BETAFACE_MEMORYIMAGE_RRGGBBAA = 0x4 (32 bit RGB)

Page 8 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

BETAFACE_MEMORYIMAGE_BBGGRRAA = 0x5 (32 bit BGR)

BETAFACE_MEMORYIMAGE_RGB32FLT = 0x6 (96bit RGB32FLT)

 piWidth Pointer to integer variable where image width in pixels will be returned

 piHeight Pointer to integer variable where image height in pixels will be returned

 ppImageBytes Pointer to a pointer variable where allocated memory buffer containing

uncompressed image pixel data according to supplied format parameter will

be returned.

 piImageBytesLen Pointer to integer variable where allocated memory buffer length in bytes will
be returned.

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise.

Betaface_CopyImage (BetafaceInternalState State, BetafaceImage Img, BetafaceImage* pImgCopy)

This function creates a copy of an image in internal Betaface representation.

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function.

 Img Betaface internal representation image in BetafaceImage variable to be copied.

 pImg Pointer to BetafaceImage variable, by this address a copy of Img image in internal

Betaface format will be returned.

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise.

Betaface_ReleaseImage (BetafaceInternalState State, BetafaceImage* pImg)

This function releases image in internal Betaface representation

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 pImg Betaface internal representation image in BetafaceImage variable

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise.

Betaface_ReleaseMemoryImage (BetafaceInternalState State, char** ppImageBytes)

This function releases memory buffer allocated via Betaface_SaveMemoryImage function

Page 9 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 ppImageBytes Pointer to a variable containing memory buffer allocated and returned by

Betaface_SaveMemoryImage function

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Betaface_GetImageSize (BetafaceInternalState State, BetafaceImage Img, int* piWidth, int* piHeight)

This function returns image dimensions in pixels

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 Img Image in internal Betaface format

 piWidth By this address width of the image in pixels will be returned

 piHeight By this address height of the image in pixels will be returned

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Betaface_DisplayImage (BetafaceInternalState State, BetafaceImage Img, char* strWindowName)

This function returns display of the image in a separate window for debugging purposes

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 Img Image in internal Betaface format

 strWindowName Window caption name for display

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Page 10 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

Face detection

Betaface_DetectFaces (BetafaceInternalState State, BetafaceImage Img, BetafaceDetectionSettings

dSettings, int* piFacesCount, BetafaceDetectionResult* pDetectionResult)

This functions searches for the face pattern on the given images in all locations and under any angles.

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 Img Source image in internal Betaface representation

 dSettings .Flags Combination of detection flags. Currently following flags are supported:

BETAFACE_DETECTFACES_BASIC = 0x0 or

BETAFACE_DETECTFACES_PRO = 0x1 – specify one of those flags to

indicate which feature points you need to detect – Basic (22 points) or

Basic + Pro (22 + 86 facial points).

BETAFACE_DETECTFACES_BASIC_PROFILE = 0x4 – detect also

profile faces (profile faces will have lower accuracy of recognition and Pro

points detection)

BETAFACE_DETECTFACES_BESTFACEONLY = 0x100 – If this flag is

specified, only single face with highest detection score is processed and

returned.

BETAFACE_DETECTFACES_PROCALC_CALC_ALL = 0xFC03 – If this

flag is supported by your SDK edition you can enable generation of

‘extended measurements’ which describe geometrical face properties,

approximate hairstyle shape, detecting skin, hair, clothes colors and other

measurements. Enabling this flag will slow down face detection function

significantly. Extended measurements will be calculated only for the face

with highest detection score.

 dSettings

.iMaxImageWidthPix

 Limits of the source image resolution. First number of pixels is calculated

as nPixels = iMaxImageWidthPix * iMaxImageHeightPix, then if actual

source image resolution exceeds this number, image is downscaled before

processing. Influences speed and quality of features detection.

Recommended values are 640 or 320 for iMaxImageWidthPix and 480 or

240 for iMaxImageHeightPix. If one or both values are 0 no downscaling

is performed, however this option is not recommended.

 dSettings

.iMaxImageHeightPix

 dSettings

.dMinFaceSizeOnImage

 Limits the minimum face size on the image as the fraction to the whole

image. Used to increase the speed of detection. 0.3 means that faces that

are 30% size of the whole picture or bigger will be detected. Value should

be adjusted depending on your application. Value can be set to 0.

 dSettings

.iMinFaceSizePix

 Limits the minimum face size as the number of pixels on the shortest face

rectangle size. Used to limit minimum face resolution. Recommended

value is 50. Value can be set to 0.

Page 11 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

 dSettings .dAngleDegrees Central angle of the faces detected. If dAngleToleranceDegrees

parameter is 0 or greater or equal to 180 degrees this parameter is

ignored.

 dSettings

.dAngleToleranceDegrees

 Limits the deviation of the face rotation angle from dAngleDegrees central

angle. If this parameter is 0 or greater or equal to 180 degrees no angle

limiting is performed. Recommended values are 30 for portrait photos (+-

30 degrees from strictly vertical face, if dAngleDegrees is 0) or 0 for full

image scan.

 dSettings.

dMinDetectionScore

 You can reduce amount of false positive face detections by putting a limit

on detection score. Use 0.0 to receive all faces detected. Recommended

value for filtering is the range 0.1-0.25, which in most of the cases filters

out all false detections including also blurred faces or faces with low

resolution.

 piFacesCount Pointer to integer variable where number of faces detected will be

returned.

 pDetectionResult Pointer to the BetafaceDetectionResult variable where the detection data

in internal Betaface representation will be returned.

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise.

Betaface_ReleaseDetectionResult (BetafaceInternalState State, BetafaceDetectionResult*

pDetectionResult)

This function releases the detection result data and all resources associated with it.

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 pDetectionResult Pointer to the BetafaceDetectionResult variable where valid detection data in

internal Betaface representation is stored.

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Page 12 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

Processing detection result, retrieving faces information

Detection result is essentially a collection of metadata associated with each face detected. This collection

of metadata is stored in a separate internal collection object for each face. You can query how many faces

were detected, retrieve specific face metadata and later get/set individual parameters values in it.

Betaface_GetFacesCount (BetafaceInternalState State, BetafaceDetectionResult DetectionResult, int*

piFacesCount)

This function returns the number of detected faces information contained in detection result

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 DetectionResult BetafaceDetectionResult variable where valid detection data in internal Betaface

representation is stored

 piFacesCount Pointer to integer variable where number of faces detected will be returned

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Betaface_GetFaceInfo (BetafaceInternalState State, BetafaceDetectionResult DetectionResult, int

iFaceIndex, BetafaceFaceInfo* pFaceInfo)

This function retrieves BetafaceFaceInfo face information in internal Betaface representation from the
detection result by the given index.

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 DetectionResult BetafaceDetectionResult variable, where valid detection data in internal
Betaface representation is stored

 iFaceIndex Index of the face, starting from 0

 pFaceInfo Pointer to the BetafaceFaceInfo variable where the face information data in

internal Betaface representation will be returned.

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Betaface_CreateFaceInfo (BetafaceInternalState State, BetafaceFaceInfo* pFaceInfo)

This function creates empty face information structure, which can be further filled in with points and

metadata. It is used when you need to create face information structure manually, for example to crop or

further process face defined by serialized points information stored in external database.

Parameters:

Page 13 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

 State Betaface library internal state value, obtained from Betaface_Init function

 pFaceInfo Pointer to the BetafaceFaceInfo variable where empty face information data in

internal Betaface representation will be returned.

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Betaface_CopyFaceInfo (BetafaceInternalState State, BetafaceFaceInfo FaceInfo, BetafaceFaceInfo*

pFaceInfoCopy)

This function creates a complete copy of face information structure.

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function.

 FaceInfo BetafaceFaceInfo variable containing face information data to be copied.

 pFaceInfoCopy Pointer to the BetafaceFaceInfo variable where complete copy of FaceInfo face

information data in internal Betaface representation will be returned.

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Betaface_ReleaseFaceInfo (BetafaceInternalState State, BetafaceFaceInfo* pFaceInfo)

Call this function to release face information data and all resources associated with it.

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function.

 pFaceInfo Pointer to the BetafaceFaceInfo variable where valid face information data in

internal Betaface representation is stored.

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Page 14 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

Getting and setting face information property values

Face information is represented by collection of named property values. Each property value is referenced

by combination (bitwise OR) of two integer constants – one of them defining specific Feature and another

defining specific parameter of this feature. Each feature can be one of three types (Face, Point and

Measurement) and have different parameters associated with it. For example: single Face type feature

called “Face” represents rectangular area, where face is found on the image and has X,Y coordinates of

its center as well as width/height of the face rectangle and detection score as parameters.

Features of Point type do not have detection scores or width/height information but only have X,Y

coordinates. Measurements have single value parameter as well as min/max parameters defining a value

within given range. Each parameter value can be either Boolean or Double, depends on the parameter,

and corresponding function should be used to get/set it.

Betaface_GetFaceInfoBoolParam (BetafaceInternalState State, BetafaceFaceInfo FaceInfo,

BetafaceFeatureParam param, bool* pValue);

This function used to retrieve Boolean type parameters values from face information data

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 FaceInfo BetafaceFaceInfo variable with stored valid face information data in internal Betaface

representation

 param Parameter ID (a combination of face feature flag and parameter flag), for example:
parameter BETAFACE_PARAM_EXISTS | BETAFACE_FEATURE_EYE_L value will be
set to true if left eye was detected on this face and coordinate information is available.

 pValue Pointer to bool variable where the requested parameter value will be returned

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Betaface_GetFaceInfoDoubleParam (BetafaceInternalState State, BetafaceFaceInfo FaceInfo,

BetafaceFeatureParam param, double* pValue);

This function is used to retrieve double type parameters values from face information data.

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 FaceInfo BetafaceFaceInfo variable with stored valid face information data in internal Betaface

representation

 param Parameter ID (a combination of face feature flag and parameter flag), for example

parameter BETAFACE_PARAM_X | BETAFACE_FEATURE_EYE_L value will contain X

Page 15 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

coordinate of the center of left eye in pixels.

 pValue Pointer to double variable where the requested parameter value will be returned

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Betaface_SetFaceInfoBoolParam (BetafaceInternalState State, BetafaceFaceInfo FaceInfo,

BetafaceFeatureParam param, bool Value);

This function used to set bool type parameters values in face information data

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 FaceInfo BetafaceFaceInfo variable where stored valid face information data in internal Betaface

representation

 param Parameter ID (a combination of face feature flag and parameter flag)

 Value bool parameter value to be set

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Betaface_SetFaceInfoDoubleParam (BetafaceInternalState State, BetafaceFaceInfo FaceInfo,

BetafaceFeatureParam param, double Value);

This function used to set double type parameters values in face information data

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 FaceInfo BetafaceFaceInfo variable with stored valid face information data in internal Betaface

representation

 param Parameter ID (a combination of face feature flag and parameter flag)

 Value double parameter value to be set

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Page 16 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

Predefined parameters:

parameter name and constant feature types value type description

BETAFACE_PARAM_DETECTED 0x0 Face Boolean Indicating that corresponding

feature information is

present.

BETAFACE_PARAM_SCORE 0x1 Face Double Detection score of the face,

representing confidence of

the face detection algorithm.

BETAFACE_PARAM_SCORE_PRO 0x7 Face Double Detection score of 86 Pro

facial points detection.

BETAFACE_PARAM_WIDTH 0x4 Face Double Width in pixels

BETAFACE_PARAM_HEIGHT 0x5 Face Double Height in pixels

BETAFACE_PARAM_ANGLE 0x6 Face Double Angle in degrees

BETAFACE_PARAM_X 0x2 Face or Point Double X coordinate in pixels

BETAFACE_PARAM_Y 0x3 Face or Point Double Y coordinate in pixels

BETAFACE_PARAM_VALUE 0x10 Measurement Double Measurement value

BETAFACE_PARAM_MIN 0x11 Measurement Double Minimum of the value range

BETAFACE_PARAM_MAX 0x12 Measurement Double Maximum of the value range

Features of the Face type:

BETAFACE_FEATURE_FACE 0x00000100

Features of the Point type (includes 8 basic and 86 Pro points):

Available in all SDK editions

BETAFACE_FEATURE_EYE_L 0x00000200 Center of left eye

BETAFACE_FEATURE_EYE_R 0x00000300 Center of right eye

BETAFACE_FEATURE_EYE_LCO 0x00000400 Left eye outer corner

BETAFACE_FEATURE_EYE_RCO 0x00000500 Right eye outer corner

BETAFACE_FEATURE_EYE_LCI 0x00000600 Left eye inner corner

BETAFACE_FEATURE_EYE_RCI 0x00000700 Right eye inner corner

BETAFACE_FEATURE_MOUTH 0x00000B00 Mouth center

BETAFACE_FEATURE_MOUTH_LC 0x00000800 Mouth left corner

BETAFACE_FEATURE_MOUTH_RC 0x00000900 Mouth right corner

BETAFACE_FEATURE_NOSE_TIP 0x00000A00 Tip of the nose

BETAFACE_FEATURE_NOSE_L 0x00001500 Left nostril

BETAFACE_FEATURE_NOSE_R 0x00001600 Right nostril

BETAFACE_FEATURE_EYEBROW_L 0x00000C00 Left eyebrow center

BETAFACE_FEATURE_EYEBROW_R 0x00000F00 Right eyebrow center

Page 17 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

BETAFACE_FEATURE_EYEBROW_LCI 0x00000D00 Left eyebrow inner corner

BETAFACE_FEATURE_EYEBROW_LCO 0x00000E00 Left eyebrow outer corner

BETAFACE_FEATURE_EYEBROW_RCI 0x00001000 Right eyebrow inner corner

BETAFACE_FEATURE_EYEBROW_RCO 0x00001100 Right eyebrow outer corner

BETAFACE_FEATURE_CHIN_B 0x00001200 Chin bottom

BETAFACE_FEATURE_CHIN_L 0x00001300 Chin left

BETAFACE_FEATURE_CHIN_R 0x00001400 Chin right

Available in Pro and Xtreme SDK editions

BETAFACE_FEATURE_PRO_CHIN_EARCONN_L 0x00010000

BETAFACE_FEATURE_PRO_CHIN_P1_L 0x00020000

BETAFACE_FEATURE_PRO_CHIN_P2_L 0x00030000

BETAFACE_FEATURE_PRO_CHIN_P3_L 0x00040000

BETAFACE_FEATURE_PRO_CHIN_P4_L 0x00050000

BETAFACE_FEATURE_PRO_CHIN_P5_L 0x00060000

BETAFACE_FEATURE_PRO_CHIN_B 0x00070000

BETAFACE_FEATURE_PRO_CHIN_P5_R 0x00080000

BETAFACE_FEATURE_PRO_CHIN_P4_R 0x00090000

BETAFACE_FEATURE_PRO_CHIN_P3_R 0x000A0000

BETAFACE_FEATURE_PRO_CHIN_P2_R 0x000B0000

BETAFACE_FEATURE_PRO_CHIN_P1_R 0x000C0000

BETAFACE_FEATURE_PRO_CHIN_EARCONN_R 0x000D0000

BETAFACE_FEATURE_PRO_TEMPLE_P4_R 0x000E0000

BETAFACE_FEATURE_PRO_TEMPLE_P3_R 0x000F0000

BETAFACE_FEATURE_PRO_TEMPLE_P2_R 0x00100000

BETAFACE_FEATURE_PRO_TEMPLE_P1_R 0x00110000

BETAFACE_FEATURE_PRO_TEMPLE_R 0x00120000

BETAFACE_FEATURE_PRO_FOREHEAD_R 0x00130000

BETAFACE_FEATURE_PRO_FOREHEAD_P4 0x00140000

BETAFACE_FEATURE_PRO_FOREHEAD_P3 0x00150000

BETAFACE_FEATURE_PRO_FOREHEAD_M 0x00160000

BETAFACE_FEATURE_PRO_FOREHEAD_P2 0x00170000

BETAFACE_FEATURE_PRO_FOREHEAD_P1 0x00180000

BETAFACE_FEATURE_PRO_FOREHEAD_L 0x00190000

BETAFACE_FEATURE_PRO_TEMPLE_L 0x001A0000

BETAFACE_FEATURE_PRO_TEMPLE_P1_L 0x001B0000

BETAFACE_FEATURE_PRO_TEMPLE_P2_L 0x001C0000

BETAFACE_FEATURE_PRO_TEMPLE_P3_L 0x001D0000

BETAFACE_FEATURE_PRO_TEMPLE_P4_L 0x001E0000

BETAFACE_FEATURE_PRO_EYE_O_R 0x001F0000

BETAFACE_FEATURE_PRO_EYE_BO_R 0x00200000

BETAFACE_FEATURE_PRO_EYE_B_R 0x00210000

Page 18 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

BETAFACE_FEATURE_PRO_EYE_BI_R 0x00220000

BETAFACE_FEATURE_PRO_EYE_I_R 0x00230000

BETAFACE_FEATURE_PRO_EYE_TI_R 0x00240000

BETAFACE_FEATURE_PRO_EYE_T_R 0x00250000

BETAFACE_FEATURE_PRO_EYE_TO_R 0x00260000

BETAFACE_FEATURE_PRO_EYE_O_L 0x00270000

BETAFACE_FEATURE_PRO_EYE_TO_L 0x00280000

BETAFACE_FEATURE_PRO_EYE_T_L 0x00290000

BETAFACE_FEATURE_PRO_EYE_TI_L 0x002A0000

BETAFACE_FEATURE_PRO_EYE_I_L 0x002B0000

BETAFACE_FEATURE_PRO_EYE_BI_L 0x002C0000

BETAFACE_FEATURE_PRO_EYE_B_L 0x002D0000

BETAFACE_FEATURE_PRO_EYE_BO_L 0x002E0000

BETAFACE_FEATURE_PRO_EYEBROW_I_R 0x002F0000

BETAFACE_FEATURE_PRO_EYEBROW_TI_R 0x00300000

BETAFACE_FEATURE_PRO_EYEBROW_T_R 0x00310000

BETAFACE_FEATURE_PRO_EYEBROW_TO_R 0x00320000

BETAFACE_FEATURE_PRO_EYEBROW_O_R 0x00330000

BETAFACE_FEATURE_PRO_EYEBROW_BO_R 0x00340000

BETAFACE_FEATURE_PRO_EYEBROW_B_R 0x00350000

BETAFACE_FEATURE_PRO_EYEBROW_BI_R 0x00360000

BETAFACE_FEATURE_PRO_EYEBROW_I_L 0x00370000

BETAFACE_FEATURE_PRO_EYEBROW_TI_L 0x00380000

BETAFACE_FEATURE_PRO_EYEBROW_T_L 0x00390000

BETAFACE_FEATURE_PRO_EYEBROW_TO_L 0x003A0000

BETAFACE_FEATURE_PRO_EYEBROW_O_L 0x003B0000

BETAFACE_FEATURE_PRO_EYEBROW_BO_L 0x003C0000

BETAFACE_FEATURE_PRO_EYEBROW_B_L 0x003D0000

BETAFACE_FEATURE_PRO_EYEBROW_BI_L 0x003E0000

BETAFACE_FEATURE_PRO_MOUTH_L 0x003F0000

BETAFACE_FEATURE_PRO_MOUTH_TL 0x00400000

BETAFACE_FEATURE_PRO_MOUTH_T 0x00410000

BETAFACE_FEATURE_PRO_MOUTH_TR 0x00420000

BETAFACE_FEATURE_PRO_MOUTH_R 0x00430000

BETAFACE_FEATURE_PRO_MOUTH_BR 0x00440000

BETAFACE_FEATURE_PRO_MOUTH_B 0x00450000

BETAFACE_FEATURE_PRO_MOUTH_BL 0x00460000

BETAFACE_FEATURE_PRO_NOSE_T_L 0x00470000

BETAFACE_FEATURE_PRO_NOSE_TI_NOSTRIL_L 0x00480000

BETAFACE_FEATURE_PRO_NOSE_TO_NOSTRIL_L 0x00490000

BETAFACE_FEATURE_PRO_NOSE_BO_NOSTRIL_L 0x004A0000

BETAFACE_FEATURE_PRO_NOSE_B_NOSTRIL_L 0x004B0000

BETAFACE_FEATURE_PRO_NOSE_B 0x004C0000

Page 19 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

BETAFACE_FEATURE_PRO_NOSE_B_NOSTRIL_R 0x004D0000

BETAFACE_FEATURE_PRO_NOSE_BO_NOSTRIL_R 0x004E0000

BETAFACE_FEATURE_PRO_NOSE_TO_NOSTRIL_R 0x004F0000

BETAFACE_FEATURE_PRO_NOSE_TI_NOSTRIL_R 0x00500000

BETAFACE_FEATURE_PRO_NOSE_T_R 0x00510000

BETAFACE_FEATURE_PRO_EYE_IRIS_R 0x00520000

BETAFACE_FEATURE_PRO_EYE_IRIS_L 0x00530000

BETAFACE_FEATURE_PRO_NOSE_TIP 0x00540000

BETAFACE_FEATURE_PRO_CHEEKBONE_L 0x00550000

BETAFACE_FEATURE_PRO_CHEEKBONE_R 0x00560000

Features of the Measurement type

Measurement features have id constants between

BETAFACE_FEATURE_PROPARAM_CALC_FIRST 0x25000000

and

BETAFACE_FEATURE_PROPARAM_CALC_LAST 0x28FF0000

with a step of

BETAFACE_FEATURE_PROPARAM_MULT 0x00010000

For complete list of Measurement features supported in your version of SDK please contact Betaface

support.

Page 20 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

Face recognition

Face recognition process involves converting face information and corresponding image into independent

recognition binary ‘key’ which usually have a size of few kilobytes or less and can be stored in the

database or any other storage like file system. Recognition key is essentially face and facial features

description in compact binary form. Recognition keys can be compared in pairs giving similarity value.

Similarity value can be used either directly to sort results of multiple faces comparison in the order of

similarity or, with a conversion for specific False Alarm (FA) rate and rank, they give normalized

confidence value - how likely two faces belong to the same person, in the range 0-100% as well as

decision whether it is the same person or not. Accuracy of such identification/verification tasks strongly

depends on the data used, size of the problem, particular algorithm and comparison strategy.

Betaface_GenerateFaceKey (BetafaceInternalState State, BetafaceImage Img, BetafaceFaceInfo FaceInfo,

BetafaceRecognitionFlags flags, char** ppFaceKeyData, int* piFaceKeyLen)

Function converts the face to the special binary “key” representation, which can be quickly compared with

any other “key(s)” to determine how similar one face is to another. These keys are usually stored in the

database as BLOB (binary large object) fields.

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 Img Image containing face to crop and to which FaceInfo corresponds

 FaceInfo BetafaceFaceInfo variable where valid face information data in internal Betaface
representation is stored

 flags Flag defining which key to generate, depending on SDK edition can be one of:

BETAFACE_RECKEY_DEFAULT = 0xFF – best available key type

BETAFACE_RECKEY_BASIC = 0x1

BETAFACE_RECKEY_PRO = 0x2

 ppFaceKeyData Pointer to the variable where the address of the key binary data will be returned

 piFaceKeyLen Pointer to the integer variable where length of the key data in bytes will be
returned

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Betaface_CompareFaceKeys (BetafaceInternalState State, char* pFaceKeyData1, char* pFaceKeyData2,

int FaceKeysLen, double* pdSimilarity)

This function compares two binary face “keys” of the same length and returns raw similarity score value.

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 pFaceKeyData1 Address of first face “key” binary data

 pFaceKeyData2 Address of second face “key” binary data

Page 21 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

 FaceKeysLen Length of the keys data in bytes

 pdSimilarity Similarity score for these two faces. The higher the score the more similarities
between two faces are found. The range of similarity score is undefined in general
case and depends on the particular algorithm.

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Betaface_CompareFaceKeysEx (BetafaceInternalState State, char* pFaceKeyData1, char*

pFaceKeyData2, int FaceKeysLen, int iRank, double dFalseAlarmRate, bool* pbIsSamePerson, double*

pdNormalizedConfidence)

This function compares two binary face “keys” of the same length and returns normalized confidence value

as well as identification decision for specified False Alarm (FA) rate and rank.

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 pFaceKeyData1 Address of first face “key” binary data

 pFaceKeyData2 Address of second face “key” binary data

 FaceKeysLen Length of the keys data in bytes

 iRank Target recognition rank (currently only 0 rank is supported)

 dFalseAlarmRate Target false alarm rate, default 0.02

 pbIsSamePerson Returned identification decision – true if those two faces belong to the same

person.

 pdNormalizedConfidence Returned abstract confidence value that those two faces belong to the

same person, normalized in the range 0-100%

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Betaface_ReleaseFaceKey (BetafaceInternalState State, char** ppFaceKeyData)

This function release face “key” binary data and all associated resources

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 ppFaceKeyData Pointer to variable containing address of face “key” binary data to be released

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Page 22 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

Betaface_JoinFaceKeys (BetafaceInternalState State, char* pFaceKeyData1, char* pFaceKeyData2, int

FaceKeysLen, bool bAppend, char** ppFaceKeyData, int* piFaceKeyLen)

When more than one image is available for particular person usual strategy is to run comparison function

using each face of one person and each face of another person, and select the best comparison result as the

winning value. This function on the other hand will allow you to ’ join’ recognition keys created from multiple

pictures into single ‘strong’ key, which might improve recognition quality for controlled environments input

data (all faces are frontal, non-extreme lighting). In this case we recommend to create strong keys that

consist of minimum 3 and ideally 10 usual keys for each person in database.

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 pFaceKeyData1 First recognition key for join operation

 pFaceKeyData2 Second recognition key for join operation

 FaceKeysLen Length of the keys data in bytes

 bAppend Type of operation, when true then key1 and key2 are joined, when false key2 is
subtracted from key1

 ppFaceKeyData Pointer to the variable where the address of the resulting strong key binary data
will be returned

 piFaceKeyLen Pointer to the integer variable where length of the key data in bytes will be
returned

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Betaface_ReconstructFace (BetafaceInternalState State, char* pFaceKeyData, int iFaceKeyLen, int iWidth,

int iHeight, double dEyesDistance, double dEyeLineHeightK, BetafaceImage* pImg);

This function can convert recognition key back into synthetic image representation of a human face. Use this

function to control quality of face recognition data learned for each person

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 pFaceKeyData Address of face “key” binary data

 iFaceKeyLen Length of the key data in bytes

 iWidth Output image width

 iHeight Output image height

 dEyesDistance Equivalent to the same parameter in Betaface_CropFaceImage function

 dEyeLineHeightK Equivalent to the same parameter in Betaface_CropFaceImage function

 pImg Resulting image with synthetic reconstructed face

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Page 23 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

Betaface_ReconstructFaceAvi (BetafaceInternalState State, char* pFaceKeyData, int iFaceKeyLen, int

iWidth, int iHeight, double dEyesDistance, double dEyeLineHeightK, char* strFilename)

This function is equivalent to Betaface_ReconstructFace except that instead of static image it produces

animated synthetic face, written in simple avi file format. Specify full filename, including .avi extension in

strFilename parameter

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 pFaceKeyData Address of face “key” binary data

 iFaceKeyLen Length of the key data in bytes

 iWidth Output image width

 iHeight Output image height

 dEyesDistance Equivalent to the same parameter in Betaface_CropFaceImage function

 dEyeLineHeightK Equivalent to the same parameter in Betaface_CropFaceImage function

 strFilename Resulting avi filename and path with synthetic reconstructed face

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Page 24 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

Classifying faces (Gender, Age, Ethnicity, Smile, Glasses or facial hair detection)

Betaface_AnalyseFace (BetafaceInternalState State, BetafaceImage Img, BetafaceFaceInfo FaceInfo,

BetafaceAnalyseFlags flags)

This function analyzes the face and tries to classify it. Results are added to FaceInfo and can be retrieved via

Betaface_GetFaceInfoDoubleParam with classifier flag combined with Value or Score flag. See

BetafaceSampleCSharpApp sample project code.

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 Img Image containing face to analyze and to which FaceInfo corresponds

 FaceInfo BetafaceFaceInfo variable where valid face information data in internal Betaface

representation is stored

 flags Flag defining which classifiers to run, depending on SDK edition can be one of:

BETAFACE_CLASSIFIER_ALL = 0xFFFFFFFF

BETAFACE_CLASSIFIER_GENDER = 0x60010000
BETAFACE_CLASSIFIER_AGE = 0x60020000
BETAFACE_CLASSIFIER_ETHNICITY = 0x60040000
BETAFACE_CLASSIFIER_EXPRESSION = 0x60080000
BETAFACE_CLASSIFIER_GLASSES = 0x60100000
BETAFACE_CLASSIFIER_MUSTACHE = 0x60200000
BETAFACE_CLASSIFIER_BEARD = 0x60400000

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Page 25 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

Cropping and drawing faces

Betaface_CropFaceImage (BetafaceInternalState State, BetafaceImage Img, BetafaceFaceInfo FaceInfo,

double dEyesDistance, double dEyeLineHeight, bool bDeRotate, int iCropWidth, int iCropHeight, double

dAreaScale, int colorBackground, BetafaceImage* pCroppedFaceImg, BetafaceFaceInfo* pCroppedFaceInfo)

This function is for cropping and de-rotating face from the source image and then fitting it to specified
output image dimensions. Use this function to crop faces as aligned portrait images.

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 Img Image containing face to crop and to which FaceInfo corresponds

 FaceInfo BetafaceFaceInfo variable where valid face information data in internal

Betaface representation is stored

 dEyesDistance The distance between the eyes on the output face rectangle, as a fraction of the

whole out image width, for example 0.3 means that the distance between the

eyes on the output face rectangle will be 30% of the cropped image width

 dEyeLineHeight The distance between the top of the output face rectangle and the line between

the eyes, as a fraction of the whole out image height, for example 0.4 means that

the distance between the top of the output face rectangle and the line between

the eyes will be 40% of the cropped image height

 bDeRotate Specify true if you want to de-rotate face into strict vertical portrait position and fit
it into the output image dimensions. If this parameter is set to false face will be
cropped under the angle it appears on the source image. It is usually set to true

 iCropWidth Output image width in pixels

 iCropHeight Output image height in pixels

 dAreaScale Additional scale coefficient applied to the face rectangle before the area to crop is
determined. If this coefficient is >1.0 then the cropped rectangle is scaled by this
factor or until the borders of the whole image are reached; if the face rectangle
was already out of the image borders then this coefficient will be fixed to 1.0. If the
specified coefficient is <1.0 then no checks are performed and scaling factor is
applied directly.

 colorBackground Background color to fill in cropped image areas that fall outside of original image
borders. Color value is in RGB format, represented as integer 0x00RRGGBB
Commonly used color values:
BETAFACE_COLOR_BLACK = 0x00000000

BETAFACE_COLOR_WHITE = 0x00FFFFFF

BETAFACE_COLOR_RED = 0x00FF0000

BETAFACE_COLOR_GREEN = 0x0000FF00

BETAFACE_COLOR_BLUE = 0x000000FF
 pCroppedFaceImg Pointer to the BetafaceImage variable where the cropped image in internal

Betaface representation will be returned

 pCroppedFaceInfo Pointer to the BetafaceFaceInfo variable where the face information data,

converted to the cropped image coordinate system will be returned

Return value:

Page 26 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

 Function returns BETAFACE_OK if it is successful, error code otherwise

Betaface_CropImageAspect (BetafaceInternalState State, BetafaceImage Img, BetafaceFaceInfo FaceInfo,

double dEyesDistance, double dEyeLineHeight, double dFaceAspectHW, double dImageAspectHW, int

colorBackground, BetafaceImage* pCroppedFaceImg, BetafaceFaceInfo* pCroppedFaceInfo)

This function crops face image and all possible surrounding area keeping the specified target image
aspect ratio. First face rectangle is calculated using dEyesDistance, dEyeLineHeight, dFaceAspectHW
parameters, then the maximum fit bounding rectangle.

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 Img Image containing face to crop and to which FaceInfo corresponds

 FaceInfo BetafaceFaceInfo variable where valid face information data in internal Betaface

representation is stored.

 dEyesDistance The distance between the eyes on the face rectangle, as a fraction of the whole

face rectangle width, for example 0.3 mean that the distance between the eyes

on the output face rectangle will be 30% of the whole face rectangle width

 dEyeLineHeight The distance between the top of the output face rectangle and the line between
the eyes, as a fraction of the whole face rectangle height, for example 0.4 mean
that the distance between the top of the output face rectangle and the line
between the eyes will be 40% of the whole face rectangle height

 dFaceAspectHW Aspect ratio of the face rectangle

 dImageAspectHW Aspect ratio of the final image area to cut

 colorBackground Background color to fill in cropped image areas that fall outside of original image
borders. Color value is in RGB format, represented as integer 0x00RRGGBB.
Commonly used color values:
BETAFACE_COLOR_BLACK = 0x00000000

BETAFACE_COLOR_WHITE = 0x00FFFFFF

BETAFACE_COLOR_RED = 0x00FF0000

BETAFACE_COLOR_GREEN = 0x0000FF00

BETAFACE_COLOR_BLUE = 0x000000FF

 pCroppedFaceImg Pointer to the BetafaceImage variable where the cropped image in internal

Betaface representation will be returned

 pCroppedFaceInfo Pointer to the BetafaceFaceInfo variable where the face information data,

converted to the cropped image coordinate system will be returned

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Page 27 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

Betaface_DrawFaceInfo (BetafaceInternalState State, BetafaceImage Img, BetafaceFaceInfo FaceInfo,

BetafaceDrawFaceFlags flags)

This function is used for debugging and visualization purposes and it draws rectangles and face feature

points stored in the face information data on the corresponding image

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 Img Image containing face to crop and to which FaceInfo corresponds

 FaceInfo BetafaceFaceInfo variable where valid face information data in internal Betaface

representation is stored

 flags Flags that can be combined using bitwise OR operation, specifying what (rectangles,

points) to draw:

BETAFACE_DRAWFACE_FACERECT = 0x00000001

BETAFACE_DRAWFACE_EYECROSSES = 0x00000002

BETAFACE_DRAWFACE_FEATURES = 0x00000004

BETAFACE_DRAWFACE_FEATURES_PRO = 0x00010000

BETAFACE_DRAWFACE_CONTOURS_PRO = 0x00020000

BETAFACE_DRAWFACE_ALL_BASIC = 0x0000FFFF

BETAFACE_DRAWFACE_ALL_PRO = 0xFFFF0000

BETAFACE_DRAWFACE_ALL = 0xFFFFFFFF

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Page 28 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

Face effects - morphing, warping, transporting to another image

Betaface_MorphFaces (BetafaceInternalState State, BetafaceImage SrcFaceImg, BetafaceFaceInfo

SrcFaceInfo, BetafaceImage DstFaceImg, BetafaceFaceInfo DstFaceInfo, double dTransitionKoeff,

BetafaceImage* pMorphedImg)

This function morphs or warps face image, using feature points contained in the face info data as an anchor

points of morphing. Morph, is a transformation effect, when one face (source) shape and texture smoothly

transforms into another face (destination) shape and texture. Morphing effect can be used to mix two faces

together and create a face containing facial features of both source and destination faces in a proportion

defined by transition coefficient, or to generate set of video frames showing transformation process (coeff. 0.0

– 1.0). Warp, is a geometrical distortion of one face (source) into a new shape, which can be done either in

one step (coeff 1.0), or in number of video frames, showing smooth transformation process.

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 SrcFaceImg Image containing source face and to which SrcFaceInfo corresponds

 SrcFaceInfo BetafaceFaceInfo variable where valid face information of the source face data in

internal Betaface representation is stored

 DstFaceImg Image containing destination face and to which DstFaceInfo corresponds. This

parameter can be NULL, in which case function performs a face Warp, using

DstFaceInfo as a target face shape for geometrical distortion

 DstFaceInfo BetafaceFaceInfo variable where valid face information of the destination face data

in internal Betaface representation is stored

 dTransitionKoeff Transition coefficient ranges from 0.0 (100% source face) to 0.5 (50% of each face)

to 1.0 (100% destination face) to determine morphing stage

 pMorphedImg Pointer to the BetafaceImage variable where the resulting morphed image ininternal

Betaface representation will be returned

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Betaface_TransportFace (BetafaceInternalState State, BetafaceImage SrcFaceImg, BetafaceFaceInfo

SrcFaceInfo, BetafaceImage DstTemplateImg, BetafaceImage DstTemplateImgAlpha, double dLx, double dLy,

double dRx, double dRy, int iContrast, int iBrightness, int iSkinFilter, BetafaceImage* pMorphedImg,

BetafaceFaceInfo* pMorphedFaceInfo)

This function can be used to extract face region from the source image and insert it in the destination image in

the specified location with transparency mask and contrast/brightness adjustments. Function align source

image according to eye coordinates of the face and targets eye coordinates in destination image, then blends

two images using specified transparency mask.

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

Page 29 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

 SrcFaceImg Image containing source face and to which SrcFaceInfo corresponds

 SrcFaceInfo BetafaceFaceInfo variable where valid face information of the source face data in

internal Betaface representation is stored

 DstTemplateIm

g

 Destination image

 DstTemplateIm

gAlpha

 Destination image transparency mask, Pixels = 0 are not transparent (only

destination image pixels will be visible), Pixels = 255 – transparent, Values between

0 and 255 define mix proportion between source and destination image.

 dLx Target left eye X position on the destination image, in pixels

 dLy Target left eye Y position on the destination image, in pixels

 dRx Target right eye X position on the destination image, in pixels

 dRy Target right eye Y position on the destination image, in pixels

 iContrast Contrast adjustment 0-200, 100 is middle value=no change

 iBrightness Brightness adjustment 0-200, 100 is middle value=no change

 iSkinFilter Skin filter – specify any value greater than 0 to apply transparency to the pixels close

to detected face skin color

 pMorphedImg Pointer to the BetafaceImage variable where the resulting morphed image in internal

Betaface representation will be returned

 pMorphedFace

Info

 Pointer to the BetafaceFaceInfo variable where valid face information of the face data

in destination image coordinates will be returned

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Betaface_TransformFaceInfo (BetafaceInternalState State, BetafaceImage Img, BetafaceFaceInfo

FaceInfo, int iTransform, double dValue, BetafaceFaceInfo* pFaceInfo)

This function applies different automatic face shape transformations of the face points.

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 Img Image containing source face to which SrcFaceInfo corresponds

 FaceInfo BetafaceFaceInfo variable where valid face information of the source face data in

internal Betaface representation is stored

 iTransform Transformation type index

 dValue Transformation strength

 pFaceInfo Pointer to the BetafaceFaceInfo variable where modified face information will be

returned

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Page 30 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

Average faces – functions to create face composites

You can create ‘averaged’ face image from the group of input face images. This is done by warping each

face image into average face shape, accumulate those warped images as well as original face shapes

and then warping accumulated face image into accumulated face shape. Following functions and

Betaface_MorphFaces function is all you need for this task.

Betaface_GetStoredAverageFaceInfo (BetafaceInternalState State, double dEyesDistance, double

dEyeLineHeight, int iImageWidth, int iImageHeight, BetafaceFaceInfo* pAverageFaceInfo)

This function returns global (static) average face shape, with scale and position determined from cropping

parameters you supply. Cropping parameters are equal to those in Betaface_CropFaceImage function

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 dEyesDistance The distance between the eyes on the output face rectangle, as a fraction of the
whole out image width, for example 0.3 means that the distance between the
eyes on the output face rectangle will be 30% of the cropped image width

 dEyeLineHeight The distance between the top of the output face rectangle and the line between

the eyes, as a fraction of the whole out image height, for example 0.4 means that

the distance between the top of the output face rectangle and the line between

the eyes will be 40% of the cropped image height

 iImageWidth Destination image width

 iImageHeight Destination image height

 pAverageFaceInfo Pointer to the BetafaceFaceInfo variable where the global average face
information data, converted to the cropped image coordinate system will be
returned

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Betaface_UpdateAverageImage (BetafaceInternalState State, BetafaceImage OldAvgImg, int OldAvgCount,

bool bAppend, BetafaceImage Img, int AvgCount, BetafaceImage* pAverageImg)

This function appends or subtracts single prepared face texture image into/from accumulated average
face texture image.

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 OldAvgImg Image containing accumulated average face texture, warped to a global face
average shape obtained in Betaface_GetStoredAverageFaceInfo function

 OldAvgCount Number of faces accumulated in average face texture image OldAvgImg

 bAppend Type of update operation, set it to true to add texture image into accumulated
image or false to subtract from it

 Img Image containing new single face texture to append into accumulated averageface
texture

Page 31 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

 AvgCount Number of faces already accumulated in image Img. If Img is not accumulated
texture image i.e. contain only one face, set this parameter to 1

 pAverageImg Pointer to the BetafaceImage variable where the accumulated average face texture
image in internal Betaface representation will be returned

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Betaface_UpdateAverageFaceInfo (BetafaceInternalState State, BetafaceFaceInfo OldAvgFaceInfo, int

OldAvgCount, bool bAppend, BetafaceFaceInfo FaceInfo, int AvgCount, BetafaceFaceInfo*

pAverageFaceInfo)

This function appends or subtracts single prepared face shape into/from accumulated average face shape

information structure

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 OldAvgFaceInfo BetafaceFaceInfo variable where accumulated average face shape information,

in internal Betaface representation is stored

 OldAvgCount Number of face shapes accumulated in average face shape information
OldAvgFaceInfo

 bAppend Type of update operation, set it to true to add face shape information into
accumulated face shape information or false to subtract from it

 FaceInfo BetafaceFaceInfo variable containing new single face shape information to
append into accumulated average face shape information

 AvgCount Number of face shapes already accumulated in face shape information
FaceInfo. If FaceInfo is not accumulated face shape i.e. contain only one face,
set this parameter to 1

 pAverageFaceInfo Pointer to the BetafaceFaceInfo variable where the accumulated average face

shape information in internal Betaface representation will be returned

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Page 32 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

Video Processing (SDK Xtreme)

Introduction

Betaface SDK video processing engine can analyze video files or video streams from cameras

via VFW interface and support custom capturing via callbacks. Video processing chain split can be divided

into two logical parts:

– capturing process, which retrieves video frames from the camera or video file, stores them in runtime

buffer for processing and releases them, when they are no longer required.

- analyzing or tracking process, which analyzes captured data, detects and tracks faces + facial features

and recognizes persons.

Betaface SDK does capturing and tracking threads synchronization internally. Your application

should be aware that whole video processing chain is a multithreaded process, i.e callbacks can be called

at any time from different threads.

 When integrating into your application, typical sequence is first to initialize Betaface SDK

(Betaface_Init), initialize capturing, and connect callback functions and then start/stop capturing and

tracking processes using StartDetectFaces/StopDetectFaces functions. When exiting application first de-

initialize video subsystem by calling Betaface_ReleaseVideo, and then de-initialize Betaface SDK by

calling Betaface_Deinit function.

General and very important rule of integration is that no callback at any time can be delayed on

your side in order not to disrupt tracking/capturing process. Do not call IO functions, wait for window

messages, access GUI or use any kind of synchronized calls anywhere in handler function. Do not release

data supplied to you in callback (video frames, parameters) or store any pointers. Maximum you can do

inside your callback handler is to copy, using corresponding copy functions, the data (video frame,

parameters) you are interested in somewhere in your local storage and immediately return. Don’t forget

callback can be called at once from multiple threads; therefore make sure you use locks to synchronize

writing operations in your local storage. Make sure that your local storage can’t be locked for significant

time from other place. Refer to or use as a starting point supplied sample application(s).

Betaface .Net interface assembly and advanced sample video project FDCamStream offers

extended capturing interface based on DirectShow.

Page 33 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

Initialize video capturing from uncompressed video file or VFW source

Betaface_LoadVideo (BetafaceInternalState State, char* strVideoFilename, BetafaceVideo* pVideo)

This function initializes offline capturing from video file and returns internal Betaface video capturing runtime

state

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 strVideoFilename Full pathname to the video file on the HDD. Video will be decoded using standard

Windows VFW interfaces, meaning only few video codecs and uncompressed

frame formats are supported

 pVideo Pointer to BetafaceVideo variable, by this address video capturing runtime state

in internal Betaface format will be returned

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Betaface_CaptureVideo (BetafaceInternalState State, int iCameraIdx, int iWidth, int iHeight, BetafaceVideo*

pVideo)

This function initializes live capturing from camera and return internal Betaface video capturing runtime state

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 iCameraIdx Index of the camera to select from VFW interface

 iWidth X size of the video frame (should be supported by the camera)

 iHeight Y size of the video frame (should be supported by the camera)

 pVideo Pointer to BetafaceVideo variable, by this address video capturing runtime state in

internal Betaface format will be returned

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Page 34 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

Initialize video capturing from custom external video source

Betaface_CaptureVideoCb (BetafaceInternalState State, CB_GrabNextFrame grabFunc, __int64

pArguments, bool bOnline, BetafaceVideo* pVideo)

This function initializes offline capturing from video file and returns internal Betaface video capturing runtime

state

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 grabFunc Pointer to frame grabbing callback handler function

 pArguments Pointer that will be passed back to you in every callback call

 bOnline TRUE when it is a live camera stream, FALSE when it is offline capture from video file.

This parameter will affect tracking procedure and whether a tracker will or will not drop

frames it cannot process in time.

 pVideo Pointer to BetafaceVideo variable, by this address video capturing runtime state in

internal Betaface format will be returned

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Callback CB_GrabNextFrame (BetafaceVideo Video, int iFrameIdx, BetafaceImage* pFrame, double*

pdFrameTime, __int64 pArguments)

This is a callback handler function prototype that will be called each time new frame could be read from the

stream. You can block this call if there are no new frames.

Parameters:

 Video BetafaceVideo variable containing video capturing runtime state in internal Betaface

format

 iFrameIdx Frame counter, starting from 0. Will increase with each callback call.

 pFrame Pointer where to write BetafaceImage with frame data

 pdFrameTime Pointer where to write frame relative time in seconds

 pArguments Your pointer supplied in Betaface_CaptureVideoCb function

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Page 35 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

De-initializing capturing and releasing allocated resources

Betaface_ReleaseVideo (BetafaceInternalState State, BetafaceVideo* pVideo)

This function stops capturing process and release all internal resources related to it

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 pVideo Pointer to variable containing video capturing runtime state in internal Betaface format

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Set capturing process callbacks

Betaface_SetFrameGrabbedCallback (BetafaceInternalState State, BetafaceVideo Video,

CB_OnFrameGrabbed callbackFunc, __int64 pArguments)

This function set callback called after for each grabbed video frame just before it is delivered to face tracker.

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 Video Video capturing runtime state in internal Betaface format

 callbackFunc Pointer to frame grabbed callback handler function

 pArguments Pointer that is passed back to you in every callback call

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Callback CB_OnFrameGrabbed (BetafaceVideo Video, BetafaceImage Frame, int iFrameIdx, double

dFrameTime, __int64 pArguments);

This is a callback handler function prototype that is called each time new frame is successfully grabbed from

the stream

Parameters:

 Video BetafaceVideo variable containing video capturing runtime state in internal Betaface

format

 Frame BetafaceImage variable containing frame pixel data in internal Betaface format

 iFrameIdx Captured frame relative index

 dFrameTime Captured frame relative time in seconds

 pArguments Your pointer supplied in Betaface_SetFrameGrabbedCallback function

Page 36 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

Return value:

 Return BETAFACE_OK

Betaface_SetFrameReleasedCallback (BetafaceInternalState State, BetafaceVideo Video,

CB_OnFrameReleased callbackFunc, __int64 pArguments)

This function set callback called after each successfully grabbed frame

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 Video Video capturing runtime state in internal Betaface format

 callbackFunc Pointer to frame released callback handler function

 pArguments Pointer that is passed back to you in every callback call

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Callback CB_OnFrameReleased (BetafaceVideo Video, BetafaceImage Frame, int iFrameIdx, double

dFrameTime, __int64 pArguments);

This is a callback handler function prototype that is called each time just before old frame is released from

capturing buffer (i.e. fully processed)

Parameters:

 Video Video capturing runtime state in internal Betaface format

 Frame BetafaceImage variable containing frame pixel data in internal Betaface format

 iFrameIdx Captured relative frame index

 dFrameTime Captured relative frame time in secnds

 pArguments Your pointer supplied in Betaface_SetFrameReleasedCallback function

Return value:

 Return BETAFACE_OK

Page 37 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

Set tracking process callbacks

Betaface_SetFaceInfoUpdatedCallback (BetafaceInternalState State, BetafaceVideo Video,

CB_OnFaceInfoUpdated callbackFunc, __int64 pArguments)

This function sets callback called after for each tracked face appearance update.

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 Video Video capturing runtime state in internal Betaface format

 callbackFunc Pointer to tracking information callback handler function

 pArguments Pointer that is passed back to you in every callback call

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Callback CB_OnFaceInfoUpdated (BetafaceVideo Video, int iFaceInfoID, int iUpdateFromFaceInfoID, int

iFrameIdx, double dFrameTime, double dStartTime, double dDurationTime, int iUpdateType, bool

isTrackingChange, BetafaceImage Frame, BetafaceFaceInfo FaceInfo, __int64 pArguments)

Description

Parameters:

 Video Video capturing runtime state in internal Betaface format

 iFaceInfoID Face appearance index

 iUpdateFromFaceInfoID For updates of the type LenUpdate indicates which appearance was merged

into current appearance. You can use this to append your data associated

with merged appearance (recognition keys for example) into iFaceInfoID

appearance.

 iFrameIdx Captured frame index

 dFrameTime Frame relative time in seconds

 dStartTime Face appearance start time

 dDurationTime Face appearance duration

 iUpdateType Type of information updated, can be

FACEINFOUPDATE_INITIAL = 0 - initial face detection

FACEINFOUPDATE_FORWARD = 1 - forward tracking

FACEINFOUPDATE_BACKWARD=2 - backward tracking

FACEINFOUPDATE_LENUPDATE=3 - total duration has changed

FACEINFOUPDATE_DELETE=4 face appearance is discarded

FACEINFOUPDATE_FINISHED=5 face appearance is finalized

 isTrackingChange True if this update is a result of the face tracking process

Page 38 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

 Frame Current frame, when provided can be used together with FaceInfo to

generate recognition keys, analyze faces. Only provided for Initial and

Lenupdate updates and non-tracking updates (i.e. full scans).

 FaceInfo Face info corresponding to the current frame

 Face Cropped face image of this appearance (currently NULL)

 pArguments Your pointer supplied in Betaface_SetFaceInfoUpdatedCallback function

Return value:

 Return BETAFACE_OK

Page 39 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

Starting/stopping both capturing and tracking processes

Betaface_StartDetectFaces (BetafaceInternalState State, BetafaceVideo Video, BetafaceTrackSettings

tSettings, BetafaceDetectionSettings dSettings)

This function starts capturing and tracking processes with specified parameters. Tracker will also try to match

each face appearance to the current persons watch list and, when enabled, will also try to learn new persons

in the video stream that do not match anyone in current watch list. Each person entry may have multiple face

appearances assigned to it.

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 Video BetafaceVideo variable containing video capturing runtime state in

internal Betaface format

 tSettings.

dDetectionTickSeconds

 Detection tick time in seconds, how often stream will be scanned for the

new faces

 tSettings.

dMinExposureSeconds

 Minimum amount of seconds face should be tracked not to be rejected as

too short appearance

 dSettings Face detection settings. Please refer to Betaface_DetectFaces function

documentation for description of those parameters. Two additional face

detections flags can be set here:

BETAFACE_DETECTFACES_TRACK_BASIC = 0x0

BETAFACE_DETECTFACES_TRACK_PRO=0x9

This suggests tracker which points to use to track faces – 86 Pro or only

8 basic.

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Betaface_StopDetectFaces (BetafaceInternalState State, BetafaceVideo Video)

This function stops capturing process immediately

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init

function

 Video Video capturing runtime state in internal Betaface format

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Page 40 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

Betaface_WaitDetectFaces (BetafaceInternalState State, BetafaceVideo Video, double dSeconds)

This function stops capturing process after specified time

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init

function

 Video Video capturing runtime state in internal Betaface format

 dSeconds Number of seconds to wait before stopping capturing/tracking process

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Page 41 of 41

Betaface Face Detection and Recognition SDK v. 2.0 rev. 03.06.2015

Monitoring tracking progress and display debug information

Betaface_GetCurrentDetectionState (BetafaceInternalState State, BetafaceVideo Video, int* piFacesCount,

BetafaceDetectionResult* pDetectionResult)

This function returns a snapshot of current capturing state and detected facial points

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 Video Video capturing runtime state in internal Betaface format

 piFacesCount Pointer where number of faces detected is returned

 pDetectionResult Pointer where snapshot of detection result should be written

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

Betaface_DrawVideoFrame (BetafaceInternalState State, BetafaceImage Img, BetafaceVideo Video, int

iFrameIdx, int iFaceID, BetafaceDrawVideoFrameFlags flags)

This function draws debug information on a video frame. Use Betaface_DisplayImage to display the frame

after drawing Betaface_SaveImage to save it in an image file.

Parameters:

 State Betaface library internal state value, obtained from Betaface_Init function

 Img Video frame in internal Betaface format

 iFrameIdx Index of video frame for which to draw available information

 iFaceID Index of the face for which to draw available information

 flags Flags, specifying what to draw – faces, points, IDs, in white or black and should tracker

additional info be displayed:

BETAFACE_DRAWVIDEOFRAME_FACE = 0x1

BETAFACE_DRAWVIDEOFRAME_POINTS = 0x2

BETAFACE_DRAWVIDEOFRAME_IDENTITY = 0x4

BETAFACE_DRAWVIDEOFRAME_CENTER = 0x8

BETAFACE_DRAWVIDEOFRAME_ALL = 0x0000FFFF

BETAFACE_DRAWVIDEOFRAME_INWHITE =0x00010000

BETAFACE_DRAWVIDEOFRAME_FILTER_SINGLES=0x00100000

BETAFACE_DRAWVIDEOFRAME_FILTER_TAILS=0x00200000

Return value:

 Function returns BETAFACE_OK if it is successful, error code otherwise

